2013年5月16日木曜日

www2013二日目


2日目の午前中はチュートリアルに出たけど,面白くなかったので,パス.
午後は,自分が発表するSWDM'13に参加.

SWDM'13 Workshop


Keynote
Disasters Response Using Social Life Networks
Ramesh Jain

Check this paper
Insight => Information
Social Web and Maslow's Hierarchy:
  
Fundamental Problem
- Connecting people to Resources
 - Effectively, efficiently, and promptly in given situations

Social Life Networks = Connecting people to resources

Aggregation and composition

Disaster Management Cycle
relief response recovery rebuilding prevention mitigation preparedness

Understanding needs and availability of resources is critical

Information is the key
- Data integration
- location analysis
- and so on

Situation mapping
Resource Management
Communication and Reporting

* Micro level data, and Macro level data

Social Structures:
  Person - Organizations - Human Society
From micro => macro

Data Ingestion
 Actionable Insights and Recommendations
Stream Processing engnie
 bridge high level concept of situation and low level data stream

E-mage data representation
 spatio-temporal element
 
Eventshop : Motivation
- Billions of data sources
- Environment for selecting and Combining
- appropriate sources to detect situation
- predict pro-active actions
- Interactions with different types of Uesrs
  Decision makers Intidviduals

# そんなシステムを作る
# dataからSituationを予測するのかな。これはやりたいことにも通じるものかも

Situation Recognition Algebra
What we have are based on our current experience. 
Will be enriched.

# For Disaster Managementという観点は面白い

Social life network for Disaster Management

SOcial web has been useful in 
- dissminating information
- situation awareness
- people finding
- warnings

All users are not equal
- How can we make personalized alerts?
- Turning Disassociated Data into Meaningful Information

LIMITATINOS
- Focus on being broad platform
- Informatoin must be extracted from limited text
- Difficult to extract Signal
- LOW Signal-to-Noise ratio

Tweeting applications ustbe solution
- develop focused micro blogs
- Get all information from 'motivated' and collaborative user
- Help them solve their problem

LifeSaver App
- Preditive analystics operators in eventshop
- interactions with data warehouses databses information systems
- building personal context in the form of personas and using it
- making eventshop available as open source
- developing livesaver app

# Persona 作成は面白そう。場所推定を含めて、RTの関係とかから予測できないかしら

Eventshopというアプリケーションを中心に色々やっているようで,面白そう.
講演の後話をしたので,メールでコンタクトを取ってみよう.

 A Sensitive Twitter Earthquake Detector
Bella Robinson, Robert Power and Mark Cameron

Identifying earthquakes via global network of seismic stations
ESA Platform
ESA Burst Detection

Geo-location of Tweets is not easy:1% geo tags
Use Yahoo's Geoplanet service to detect user's location: 70%

特に目新しい感じはしない

Delay: 3:03 (max 5:34)
別に,ソーシャルでやる必要はないんじゃないかと.

Text vs. Images: On the Viability of Social Media to Assess Earthquake Damage
Yuan Liang, James Caverlee and John Mander

ソーシャルメディアデータからダメージは予測可能か?
TextとImageのどちらがダメージの予測に適してるのか

35%のツイートがURLを含む
 
Using Density
Tweet density
Retweet density
Number of user tweet

Spread Speed
Text spread constant
Media spread slow and Chaotic

Intensity Attenuation
Log RT densityは距離によってLogで減衰

減衰の様子はなかなか面白い.

Comparing Web Feeds and Tweets for Emergency Management
Robert Power, Bella Robinson and Catherine Wise. 

Australian again
Emergency Response Intelligence Capability : ERIC

What information is there on Twitter about an event
Where is...

Compare Official data and Tweet data

Emergency service agencies provides userful information in different ways
Tweet from official sources:
 - are reported sooner
 - contains specific information
 - detailed
 - updated frequency
 - include information from public
compare to personal tweets

Practical Extraction of Disaster-Relevant Information from Social Media
Muhammad Imran, Shady Elbassuoni, Carlos Castillo, Fernando Diaz and Patrick Meier. 

Categorised Sandy tweets 
- personal
- informative
 - caution and advise
 - casualties and damage 
 - donations

Extract information that contribute to situational awareness
Filtering, Clustering, Extracting

Filtering
- Is disaster related?
- Contributes to situational awareness?
class: 
- personal (also for friends)
- informative (for many people)
- others
Filter personal and others
Using WEKA

Classification
- Caution & advise
- Casualties & Damage
- Donations
- people
- information sources
- others
Using WEKA

Extraction
- Using crowdsourcing
Automatic Extractor
- Using CMU ARK Twitter NLP
  - UsingCRF

70-80%位の精度で成功
Many messages contribute to situational awareness
IE can speed up management
Various informative classes
We can use Machine Learning for all 3 tasks


Location-Based Insights from the Social Web
Yohei Ikawa, Maja Vukovic, Jakob Rogstadius and Akiko Murakami

Why twitter for disaster management?
APIs and so on

Inferring Location from the Social Web
Location Types and Use Cases in Disaster Management
- Location in Text
- Focused Locatoins
- User's current Location
- User's Location Profile

Use location data in crisis tracker

Confidence Score is calculated based on 
- Location Popularity
- Region Context
Confidence score is
- Location popularity x Region Context

Information Verification during Natural Disasters
Abdulfatai Popoola, Dmytro Krasnoshtan, Attila Toth, Victor Naroditskiy, Carlos Castillo, Patrick Meier and Iyad Rahwan

Boston Malathon
Social Media vs Mass media
social media で誤報.
SocialMediaは信頼に値するのか?

BBC's user-generated content hub
"Social Media news agency"
Verificatoin of authenticity of photo and video evidence
Time of day, weather, landmarks...
Accents spoken, ambient noises, etc

Truth in social media is a widespread concern

Jounarists verify, verify, verify
Computer Scientist apply ML, IR, NLP
というの言いっぷりが面白かった.

相変わらずメモになっていないメモだけど,あとで論文読めば,まあいいか.
昨日のWSよりは遙かに面白かった.


0 件のコメント: